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1 Introduction

As a graduate student of Computer Science and Engineering, I currently focus on machine learning and
data mining1. In this area, I use machine learning algorithms to approximately solve non-convex problems,
such as approximating complex conditional distribution.

One example is Machine Translation, which aiming at translating sentence from one language to
another language. Specifically, given source sentence (x1, . . . , xm), the machine needs to translate it into
the target sentence (y1, . . . , yn), where xi, yj , (1 ≤ i ≤ m, 1 ≤ j ≤ n) are all random variables. Thus, this
problem is equal to approximating the distribution p(y1, . . . , yn|x1, . . . , xm) with parameterized distribution
qθ(y1, . . . , yn|x1, . . . , xm), where θ indicates the model parameters. However, this problem is difficult for
three reasons:

1. The maximal sentence length could be long. For example, in the common translation benchmarks,
such as LDC Chinese-English task and WMT14 English-German task, there are sentences with length
larger than 512.

2. The vocabulary size could also be large. The vocabulary size of English is from 50,000 to 10,000. Thus,
we need to deal with at least 50000512 possibilities.

3. The complex phrase composition,grammatical rules, and syntactic structure.

The above problems are not only for machine translation, but also for other natural language processing
problems, such as information retrieval, sequence labeling, etc.

From my perspective, utilizing various symmetries of language have two advantages:

1. Reducing the size of the space to be modeled. For example, if there are sentences, the only difference
between them is the place of time adverbials. Then, I think they are almost equal in meaning, due to
the symmetry of the syntactic structure.

2. Providing interpretability of the model. Some machine learning algorithms are considered black-box
models and lack interpretability for parameters of the submodule, such as neural networks.

As Lie group is a group of symmetries where the symmetries are continuous, I investigate Lie group
in machine learning in this survey out of my interest. I will first give some definitions and concepts of

1The website of our lab is http://apex.sjtu.edu.cn/.

1

http://apex.sjtu.edu.cn/


mathematics nouns and popular machine learning models. Then, I will give some basic results of Lie group
in machine learning.

2 Definition

In this section, I clarify basic concepts and definitions.2

2.1 Feature Map Vector Space

Definition 1. Let S be some set, the feature map vector space is defined as:

V ≜ {f |f : S → R} (1)

First, I want to introduce the concept of feature map. This is a space of scalar-valued functions on the
set S, representing the features of each point in S. For example, in computer vision, S could be R2 which
indicating the 2D coordinates and each f ∈ V could be a gray value function that assigning a gray value
for each pixel between [0, 255]. In natural language processing, S could be {1, 2, . . . , 512} indicating the
discrete positions of words in the sentence and range(f) ∈ [50000] ⊆ R indicating the words assignment,
where [50000] is the coded vocabulary.

2.2 G-Equivariant/Invariant

Definition 2. Let G be a group, V1, V2 be two feature map vector spaces. A map Φ : V1 → V2 is G-
equivariant with respect to actions ρ1, ρ2 of G acting on V1, V2 respectively if: Φ [ρ1(g)f ] = ρ2(g)Φ[f ] for
any g ∈ G, f ∈ V1.

Definition 3. A map Φ : V1 → V2 is G-invariant with respect to actions ρ1, ρ2 of G acting on V1, V2
respectively if Φ is G-equivariant and ρ2 is the identity map for any g ∈ G.

Then, G-equivariant, a concept from representation theory in undergraduate, is necessary. Because in
machine learning I am interested in those operation Φ that is equivariant under the group action. For
example, there are rotations and transitions in images. I use Φ to map the shallow color features contained
in V1 to useful textural features V2 and require that they are the same despite the order of rotation or
transition of the object.

2.3 Regular Representation

Definition 4. A regular representation π acting on feature map vector space V is defined as follows:

[π (gθ) (f)] (gϕ) ≜ f
(
g−1
θ gϕ

)
(2)

2Though some concepts are fundamental for students of mathematics, they are fresh for me. Thus, I also write them down.
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2.4 Lifting

Before introducing lifting, I need to define the homogeneous space:

Definition 5. Let the group G acts on a set X via action ρ, if ∀x, x′ ∈ X ,∃g ∈ G : ρ(g)x = x′, then the
action is transitive and X is a homogeneous space with respect to G.

This means that all elements of X are connected by the action.

Definition 6. Let X be a homogeneous space with respect to some group G, F : X → R be a feature
map vector space. The lifting L maps fX ∈ F (supported on

⋃n
i=1 {xi} ⊂ X ) to L[fX ] (supported on⋃n

i=1 s(xi)H ⊂ G) such that:
L [fX ] (g) ≜ fX (xi) for g ∈ s (xi)H (3)

.

2.5 Lie groups in Machine Learning

I introduce some common Lie groups used in machine learning and their parameterization. Let exp :
g → G and log : G → g be the Exponential maps and Log maps in the courses. Let the map ν : g → Rd

represent a function to extracts the free parameters from the Lie algebra element. I give the Lie groups and
their corresponding free parameters as follows:

• G = T (n), t ∈ Rn, ν[log(t)] = t.

• G = SO(2), R =

[
cos θ − sin θ
sin θ cos θ

]
∈ R2×2, ν[log(R)] = θ = arctan (R10/R01).

• G = SE(2), R =

[
cos θ − sin θ
sin θ cos θ

]
∈ R2×2, t ∈ R2, ν[log(tR)] =

[
t′

θ

]
, where t′ = V −1t, V =[

a −b
b a

]
, a ≜ sin θ

θ , b ≜ 1−cos θ
θ .

• G = SO(3), R ∈ R3×3, t ∈ R3, ν[log(R)] = ν
[

θ
2 sin θ

(
R−R⊤)] = θ

2 sin θ

 R21 −R12

R02 −R20

R10 −R01

, where cos θ =

Tr(R)−1
2 .

• G = SE(3), R ∈ R3×3, t ∈ R3, ν[log(tR)] =

[
t′

r′

]
, where t′ = V −1t, r′ = ν[log(R)], V = I +

1−cos θ
θ2

(
R−R⊤)+ θ−sin θ

θ3

(
R−R⊤)2.

2.6 Lie Convolution Model

First, I define the conventional convolution operation.

Definition 7. Let I ∈ {f |f : R3 → R} ≜ V1 be the feature map of a 2D image with channels (the third
dimention), K ∈ {f |f : R3 → R} ≜ V2 be a kernel function, nH , nW , nC be the height, width, channels of
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image, feature map vector space V3 ≜ {f |f : R2 → R}. Then, the convolution operator conv : V1×V2 → V3
is defined as follows:

[conv(I,K)] (x, y) =

nH∑
i=1

nW∑
j=1

nC∑
k=1

K(i, j, k)I(x+ i− 1, y + j − 1, k) (4)

This operator conv with backpropagation algorithm [5] achieves great improvement in image processing.

As a natural generalization of conventional convolution operation, group equivariant convolution is pro-
posed first in paper [2], which enjoys a substantially higher degree of weight sharing than regular convolution
layers.

Definition 8. The group equivariant convolution Ψ : IU → IU is defined as :

[Ψf ](g) ≜
∫
G

ψ
(
g′−1g

)
f (g′) dg′ (5)

where ψ : G → R is the convolutional filter and the integral is defined withe respect tot the left Haar
mearsure of G.

Recently, Lie convolution is proposed, such as papers [3]. The definition is rather similar to the group
equivariant convolution. The discretized integral is defined as follows:

h (ui) = (k∗̂f) (ui) =
1

ni

∑
j∈nbhd(i)

k
(
v−1
j ui

)
f (vj) (6)

where ui is the group elements, k is the kernel function, nbhd(i) = {v : d(ui, v) ≤ r} is the local neighborhood
of ui. The distance d(u, v) ≜

∥∥log (u−1v
)∥∥

F
is induced by Frobenius norm.

2.7 Lie Self Attention Model

The Self Attention model consists of Scaled Dot-Product Attention and Multi-Head Attention. Assume
the input is a sequence of tokens. The Scaled Dot-Product Attention maps linearly those tokens to keys’,
queries’, and values’ spaces by matrices Q,K, V . Assume that queries and keys are of dimension dk, and
values of dimension dv. It does the dot products of the query with all keys, divide each by

√
dk, and applies

a softmax function to obtain the weights on the values. The matrix of Scaled Dot-Product Attention is as:

Scaled Dot-Product Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (7)

As it beneficial to linearly project the queries, keys and values h times with different, learned linear projections
to dk, dk and dv dimensions, respectively, Multi-Head Attention is used. Multi-head attention allows the
model to jointly attend to information from different representation subspaces at different positions.

MultiHead(Q,K, V ) = Concat ( head 1, . . . , head h)W
O

where head i = Scaled Dot-Product Attention
(
QWQ

i ,KW
K
i , V WV

i

) (8)

where the projections are parameter matrices WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,WV
i ∈ Rdmodel ×dv and

WO ∈ Rhdv×dmodel .

Lie Self Attention model [6] is using the lifted group elements to substitute the operations between tokens.
For example, I can define the followings:
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• dot-product: for any two elements g, g′ ∈ G as 1√
dv

(
WQf(g)

)⊤
WKf (g′) ∈ R.

• normalization of weights: softmax ({αf (g, g
′)} g′ ∈ Gf )

• multihead equivariant self-attention:

V m(g) =

∫
Gf

wf (g, g
′)WV,mf (g′) dg′ ∈ Rdv/M (9)

From my view, the main difference is that the operation is on group elements, which represent some kind of
symmetry.

2.8 Lie Auto Encoder Model

Auto-encoder is a generative neural network model whose encoder compresses the inputs into hidden
vectors and the decoder restores the original input. Commonly, the hidden vector is modeled as Gaussian
distribution.

Some paper [4] investigate the tangent space of a special Lie group manifold: upper triangular positive
definite affine transform matrices (UTDATs). The application is that non-degenerate Gaussian distributions
are isomorphic to UTDATs.

As UTDATs form a Lie group, one can work on the tangent spaces (Lie algebras) to make them suitable
for machine learning models. Then project back to Lie group by exponential mapping.

3 Main Results

In this section, I collect some results of Lie group in machine learning. My work is more like a research
porters.

Theorem 1. [1] The function composition f ◦fK ◦ · · · ◦f1 of several equivariant functions fk, k ∈ 1, 2, . . . ,K
followed by an invariant function f , is an invariant function.

Proof. Consider group representations π1, . . . , πK that act on f1, . . . , fK respectively, and representation π0
that acts on the input space of f1. If each fk is equivariant with respect to πk; πk1 such that fk◦πk1 = πk◦fk,
and f is invariant such that f ◦ πk = f , then we have:

f ◦ fk ◦ . . . ◦ f1 ◦ π0 = f ◦ fk ◦ . . . ◦ π1 ◦ f1
...
= f ◦ πk ◦ fk ◦ . . . ◦ f1
= f ◦ fk ◦ . . . ◦ f1

(10)

hence f ◦ fK ◦ · · · ◦ f1 is invariant.

Theorem 2. [6] The group equivariant convolution Ψ : IU → IU defined as: [Ψf ](g) ≜
∫
G
ψ
(
g′−1g

)
f (g′) dg′

is equivariant with resepct to the regular representation π of G acting on IU as [π (u) (f)] (g) ≜ f
(
u−1g

)
.
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Proof. Use the invariance of the left Haar measure.

Ψ[π(u)f ](g) =

∫
G

ψ
(
g′−1g

)
[π(u)f ] (g′) dg′

=

∫
uG

ψ
(
g′−1g

)
f
(
u−1g′

)
dg′

=

∫
G

ψ
(
g′−1u−1g

)
f (g′) dg′

= [Ψf ]
(
u−1g

)
= [π(u)[Ψf ]](g)

(11)

Theorem 3. The lifting layer L is equivariant with respect to the representation π.

Proof. Note L [π(u)fX ] (g) = fi for g ∈ s(uxi)H and [π(u)L [fX ]] (g) = L[fX ]
(
u−1g

)
= fi for g ∈ us(xi)H.

Hence L [π(u)fX ] = π(u)L [fX ] because the two cosets are equal: s(uxi)H = us(xi)H, ∀u ∈ G.

In natural language processing, self attention [7] is a powerful model that achieves the best performance
in amounts of real-life applications. For more details, please refer to Section 2 or the original paper.

Theorem 4. [6] LieSelfAttention is equivariant with respect to the regular representation π.

Proof. Let IU = L(G,RD) be the space of unconstrained functions f : G→ RD. We can define the regular
representation π of G acting on IU as follows:

[π(u)f ] (g) = f(u−1g) (12)

f is defined on the set Gf =
⋃n

i=1 s(xi)H (i.e. union of cosets corresponding to each xi). Note Gπ(u)f = uGf ,
and Gf does not depend on the choice of section s.

Note that for all provided choices of kc and kl, we have:

kc ([π(u)f ](g), [π(u)f ] (g
′)) = kc

(
f
(
u−1g

)
, f

(
u−1g′

))
kl
(
g−1g′

)
= kl

((
u−1g

)−1 (
u−1g′

)) (13)

Hence for all choices of F , we have that

απ(u)f (g, g
′) = F

(
kc ([π(u)f ](g), [π(u)f ] (g

′)) , kl
(
g−1g′

))
= F

(
kc

(
f
(
u−1g

)
, f

(
u−1g′

))
, kl

((
u−1g

)−1
u−1g′

))
= αf

(
u−1g, u−1g′

) (14)

We thus prove equivariance for the below choice of LieSelfAttention Φ : IU → IU that uses softmax
normalisation, but a similar proof holds for constant normalisation. Let Af (g, g

′) ≜ exp (αf (g, g
′)), hence

Equation (10) also holds for Af :

[Φf ] (g) =

∫
Gf

wf (g, g
′) f (g′) dg′

=

∫
Gf

Af (g, g
′)∫

Gf
Af (g, g′′) dg′′

f (g′) dg′
(15)
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Hence:

wπ(u)f (g, g
′) =

Aπ(u)f (g, g
′)∫

Gπ(u)f
Aπ(u)f (g, g′′) dg′′

=
Af

(
u−1g, u−1g′

)∫
uGf

Af (u−1g, u−1g′′) dg′′

=
Af

(
u−1g, u−1g′

)∫
Gf
Af (u−1g, g′′) dg′′

= wf

(
u−1g, u−1g′

)
(16)

Then we can show that Φ is quivariant with respect to the representation π as follows:

Φ[π(u)f ](g) =

∫
Gπ(u)f

wπ(u)f (g, g
′) [π(u)f ] (g′) dg′

=

∫
uGf

wf

(
u−1g, u−1g′

)
f
(
u−1g′

)
dg′

=

∫
Gf

wf

(
u−1g, g′

)
f (g′) dg′

= [Φf ]
(
u−1g

)
= [π(u)[Φf ]](g)

(17)

Theorem 5. [3] Let operator K : L2(X) → L2(Y ) be linear and bounded, let X,Y be homogeneous spaces
on which Lie group G act transitively, and dµX a Radon measure on X, then:

1. K is a kernel operator, i.e., ∃k̃∈L1(Y×X) : (Kf)(y) =
∫
X
k̃(y, x)f(x)dµX

2. under the G-equivariance constraint of Eq. (3) the map is defined by a one-argument kernel:

k̃(y, x) =
dµX

(
g−1
y ⊙ x

)
dµX(x)

k
(
g−1
y ⊙ x

)
(18)

for any gy ∈ G such that y = gy ⊙ y0 for some fixed origin y0 ∈ Y

3. if Y ≡ G/H is the quotient of G with H = StabG (y0) = {g ∈ G | g ⊙ y0 = y0} then the kernel is
constrained via:

∀h∈H ,∀x∈X : k(x) =
dµX

(
g−1
y ⊙ x

)
dµX(x)

k
(
h−1 ⊙ x

)
(19)

Proof. 1. It follows from Dunford-Pettis Theorem, that if K is linear and bounded it is an integral oper-
ator.
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2. The left-equivariance constraint then imposes bi-left-invariance of the kernel k̃ as follows, where ∀g∈G

and ∀f∈L2(X): (
K ◦ LG→L2(X)

g

)
(f) =

(
LG→L2(Y )◦K
g

)
(f) ⇔∫

X

k̃(y, x)f
(
g−1x

)
dx =

∫
X

k̃
(
g−1y, x

)
f(x)dx

in r.h.s. integral⇔ x← g−1x∫
X

k̃(y, x)f
(
g−1x

)
dx =

∫
X

k̃
(
g−1y, g−1x

)
f
(
g−1x

)
d
(
g−1x

)
⇔∫

X

k̃(y, x)f
(
g−1x

)
dx =

∫
X

k̃
(
g−1y, g−1x

)
f
(
g−1x

) 1

|det g|
dx

(20)

Since the final equation holds for all f ∈ L2(X) we obtain:

∀g∈G : k̃(y, x) =
1

|det g|
k̃
(
g−1y, g−1x

)
(21)

Furthermore, since G acts transitively on Y we have that ∀y,y0∈Y ∃gy∈G such that y = gyy0 and thus

k̃(y, x) = k̃ (gyy0, x) =
1

|det gy|
k̃
(
y0, g

−1
y x

)
=:

1

|det gy|
k
(
g−1
y x

)
(22)

for every gy ∈ G such that y = gyy0 with arbitrary fixed origin y0 ∈ Y .

3. Every homogeneous space Y of G can be identified with a quotient group G = H. Choose an origin
y0 ∈ Y s.t. ∀h∈H : hy0 = y0, i.e., H = StabG y0, then

k̃ (y0, x) = k̃ (hy0, x)⇔ k(x) =
1

|deth|
k
(
h−1x

)
(23)

Theorem 6. [4] Let Gi be the UTDAT and gi be the corresponding vector in its tangent Lie algebra at the
standard Gaussian. Then:

Gi =


σi1 µi1

σi2 µi2

. . . ...
0 0 . . . 1

 (24)

gi =


ϕi1 θi1

ϕi2 θi2
. . . ...

0 0 . . . 1

 , (25)

where:
ϕik = log (σik) (26)

θik =
µik log (σik)

σik − 1
(27)

Proof. By the definition of UTDAT, we can straightforwardly get the first equation.
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Let H = Gi − I, Using the series form of matrix logarithm, we have:

gi = log (Gi)

= log(I +H)

=

∞∑
t=1

(−1)t−1H
t

t
.

(28)

By substituting H into it, we get the second equation and the following:

ϕik =

∞∑
t=1

(−1)t−1 (σik − 1)
t

t

= log (σik)

(29)

and:
θik =

∞∑
t=1

(−1)t−1µik (σik − 1)
t−1

t

=
µik log (σik)

σik − 1

(30)

Alternatively, after we identify gi has the form as in the second equation, we can derive the exponential
mapping by the definition of matrix exponential:

Gi = exp (gi) =

∞∑
t=0

gt
i

t!

=


∑∞

t=0
ϕt
i1

t! θi1
∑∞

t=1
ϕt−1
i1

t!
. . . ...

0 . . . 1



=


eϕi1 θi1

ϕi1

(∑∞
t=0

ϕt
i1

t! − 1
)

. . . ...
0 . . . 1



=

 eϕi1
θik

(
eϕi1−1)

ϕi1

. . . ...
0 . . . 1

 .

(31)

4 Conclusion

To sum up, in this project, I investigate the applications of Lie group in machine learning. The applica-
tions are mainly in the improvement of convolution operator in computer vision, self attention operator in
natural language processing, and auto-encoder. Most of the time, I am like a Theorem porter. In my eyes,
I need to see the code for better understanding the detailed implementation.
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